Youth with and without epilepsy differ in 'social brain' connectivity during a social cognitive task, but not at rest

Deficits in social cognition are common in people with epilepsy. This means that individuals with epilepsy may struggle to understand others' intentions in social situations, may find it harder to interpret others' facial expressions or tone of voice in social interactions, or may have trouble forming social connections with others. We know that epilepsy is associated with atypical functioning in regions of the brain that are thought to be involved in social cognition, but most existing research has examined patterns of brain connectivity at rest--that is, when nothing is happening. The current study wanted to investigate whether youth with epilepsy showed different brain connectivity patterns in these 'social brain' areas, when participants were completing a social cognition task. To answer this question, we compared brain connectivity within the "mentalizing network" (involved in theory of mind and other social cognitive functions) and within a network centered around the amygdala (involved in processing salient social information) in youth with and without epilepsy, while they were either completing a facial emotion recognition task or were at rest.

Compared to typically-developing youth, youth with epilepsy showed weaker connectivity between the left posterior superior temporal sulcus and the medial prefrontal cortex of the brain when seeing facial expressions in the emotion recognition task. These regions are thought to work together during social cognitive tasks, so decreased connectivity between these areas may indicate that these network nodes aren't communicating as efficiently or as well as they could be in youth with epilepsy. On the flip side, we found that youth with epilepsy had greater connectivity within the temporal lobe (between the left temporo-parietal junction and the anterior temporal cortex, to be precise) compared to typically-developing adolescents. This pattern was associated with poorer accuracy on the facial emotion recognition task. It is possible that youth with epilepsy are using a different 'strategy' in the task that results in different brain connectivity patterns in the temporal lobe, but we would need to test this possibility explicitly in future studies. In contrast to these findings, youth with and without epilepsy did not differ in their connectivity within either social brain network during resting-state scans (i.e., when they weren't doing a task).

israel-palacio-ImcUkZ72oUs-unsplash.jpg

Overall, our findings highlight that there may be important differences in how regions associated with social cognition are connected to one another during social cognitive tasks in youth with and without epilepsy. Although this is only a first step in understanding this phenomenon, our results indicate that looking at neural connectivity patterns during relevant tasks may be important to understanding the association between epilepsy and social cognitive deficits.

Find out more and read the paper here: https://www.sciencedirect.com/science/article/abs/pii/S0028393221001330