Youth with epilepsy sometimes report having a hard time forming and maintaining relationships with others. This may be due to a variety of factors, but some research has suggested that deficits in “emotion recognition’”—or, the ability to interpret emotion in others’ facial expressions or tone of voice—may make it more challenging for youth with epilepsy to navigate social interactions. Difficulties in emotion recognition tend to be more pronounced in adults with childhood-onset epilepsy, suggesting that recurrent seizures may be disrupting the integrity of brain circuits involved in this social-cognitive skill in youth. However, though previous studies had investigated the neural representation of emotional faces in adults, none had examined the neural correlates of emotional face processing in youth with epilepsy. The current study examined whether emotional faces elicited different neural response in the brains of youth with and without epilepsy—and whether such differences were related to deficits in emotion recognition. Participants completed a facial emotion recognition task, in which they were asked to identify the emotion in other teenagers’ facial expressions, while undergoing functional magnetic resonance imaging (fMRI). We found that, compared to typically-developing youth, youth with epilepsy were less accurate in the facial emotion recognition task. In addition, youth with epilepsy showed blunted activation in the fusiform gyrus and right posterior superior temporal sulcus—two regions that play an important role in the processing of faces and social information. Reduced activation in these regions was correlated with poorer accuracy in the facial emotion recognition task. Together, our results suggest that reduced engagement of brain regions involved in processing socio-emotional signals may contribute to difficulties in social cognition experienced by youth with epilepsy.
Brain characteristics associated with symptoms of anxiety/depression in youth with epilepsy
Compared to the general population or to other groups of people with chronic health conditions, individuals with epilepsy are more likely to also experience internalizing disorders (i.e., depression and/or anxiety) during their lifetime. In adults, these comorbid conditions are thought to be indexed by specific neural biomarkers, including irregularities in the structure and function of frontal and temporal regions of the brain. However, less work has investigated whether similar patterns may be noted in children and adolescents with epilepsy, who are at risk of developing depression and/or anxiety. The current study capitalized on the fact that youth with epilepsy often undergo MRI (magnetic resonance imaging) scans, PET (positron emission tomography) scans, and psychological assessments as part of their clinical evaluations. We examined whether youth with epilepsy who experienced clinically-significant levels of internalizing problems had different patterns of brain structure and/or function than youth who scored in the normal range for such symptoms. We found that 42% of youth in our sample scored in the clinical range for internalizing symptoms on a parent-report of psychological well-being (Child Behavior Checklist; Achenbach, 2001)—suggesting that anxiety and depression may be a common concern for many young patients. Symptoms were not predicted by characteristics of the illness (like age of seizure onset or location of seizure focus) nor of the patient (like age or gender). However, youth in the clinical range showed reduced cortical volume overall, as well as cortical thinning and decreased function (measured via glucose reuptake) in bilateral parietal/occipital lobes and left temporal regions, compared to youth in the normal range. A follow-up classifier analysis demonstrated that these brain characteristics were predictive of internalizing problems at an individual level. Taken together, our findings suggest that children and adolescents with epilepsy who show widespread reductions in cortical thickness and neural function in clinical evaluations may benefit from intensified psychological evaluation and support for possible mood and anxiety symptoms.
Read more at: https://www.ncbi.nlm.nih.gov/pubmed/31882324
Loneliness in adolescents is associated with the recognition of vocal fear and friendliness
During the teenage years, adolescents typically begin forming complex social networks and spending more time with friends than with their parents. However, not all teenagers experience the same level of social connection at this age. Feelings of loneliness can be hard to manage, and may impact the way in which teenagers interpret social information. Previous research has shown that lonely individuals are highly attuned to social information, including both cues of social threat and signals of affiliation. Relatedly, loneliness has been linked to better recognition of negative emotions conveyed by others’ facial expressions. However, little is known about whether loneliness has similar associations with the interpretation of non-facial information, such as others’ tone of voice. To answer this question, we asked 11- to 18-year-old adolescents to report on their feelings of loneliness and to complete a vocal emotion recognition task, in which they were asked to select the emotion they thought was being conveyed in recordings of emotional voices. Contrary to our expectations, we found that loneliness was linked to poorer recognition of fear (a negative emotion), but better recognition of friendliness (an affiliative expression), in others’ voices. We speculated that differences from previous findings may stem from the differential timecourse over which vocal emotion unfolds: though negative cues may initially grab listeners’ attention, lonely individuals’ tendency to avoid threat may interfere with their accurate interpretation of this type of social cue. This work provides some evidence that youth’s cognitive response to social information is likely relevant to their social experiences, but highlights the importance of extending our assessment of social information processing to non-facial modalities.
More details about this work can be found here: https://tandfonline.com/doi/full/10.1080/02699931.2019.1682971
Morningstar, M., Nowland, R., Dirks, M.A., & Qualter, P. (2019). Links between feelings of loneliness and the recognition of vocal socio-emotional expressions in adolescents. Cognition & Emotion. doi: 10.1080/02699931.2019.1682971
Age-related changes in adolescents’ neural connectivity and activation when hearing vocal prosody
The ability to understand others' emotional state based on their tone of voice (vocal emotional prosody) develops throughout adolescence. Does neural activation to vocal prosody also change with age during the teenage years? We asked 8 to 19 year-old youth to complete a vocal emotion recognition task, in which they had to identify speakers' intended emotion based on their prosody, while in the MRI scanner. Age was associated with greater functional activation in regions of the frontal lobe often associated with language processing and emotional categorization. Further, age was linked to greater structural and functional connectivity between these frontal regions and the temporal-parietal junction, an area crucial for social cognition. These maturational changes were associated with greater accuracy in identifying the intended emotion in others' voices, suggesting that these neurodevelopmental processes may be supporting the growth of vocal emotion recognition skills during adolescence.
Neural responses to teenagers' faces depend on age and relative closeness to peers
In our new paper, we investigated whether the extent of teenagers’ social re-orientation towards peers was associated with their neural response to adolescents’ emotional faces. We asked 8- to 19-year-old youth to report on their closeness to their parents and to their friends, and to identify the emotions in teenage faces while undergoing fMRI. Compared to younger teenagers, older adolescents reported being closer to their peers than to their parents. In addition, responses in the ‘social’ and ‘reward’ related areas of the brain differed depending on teenagers’ age and relative closeness to their peers. Our findings suggest that the formation of close peer relationships during the teenage years may be accompanied by changes in neural response to social information.